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Abstract. Visualizing network data is applicable in domains such as bi-
ology, engineering, and social sciences. We report the results of a study
comparing the effectiveness of the two primary techniques for showing
network data: node-link diagrams and adjacency matrices. Specifically,
an evaluation with a large number of online participants revealed statis-
tically significant differences between the two visualizations. Our work
adds to existing research in several ways. First, we explore a broad spec-
trum of network tasks, many of which had not been previously evaluated.
Second, our study uses a large dataset, typical of many real-life networks
not explored by previous studies. Third, we leverage crowdsourcing to
evaluate many tasks with many participants.

1 Introduction

Visualizing and exploring network data is known to benefit a wide range of
domains, including biology, engineering, and social sciences [53]. The data visu-
alization community has proposed many different approaches to visual network
exploration. By comparison, however, the body of work that evaluates the ability
of such methods to support data-reading tasks is limited. We describe the results
of a comparative evaluation of the two most popular ways of visualizing net-
work data: node-link diagrams (NL) and adjacency matrices (AM). Specifically,
we consider two interactive visualizations (NL and AM), using a crowdsourced,
between-subject methodology, with 557 distinct online users, 14 evaluated tasks,
and 1 real-world dataset; see Fig. 1.

Several earlier studies compare NL and AM visualizations on specific classes
of networks and using a variety of tasks [20, 21, 35, 29]. They show that the
effectiveness of the visualization depends heavily on the properties of the given
dataset and the given data-reading tasks. For example, Ghoniem et al.’s seminal
evaluation [20] found that the two visualizations’ ability to support specific tasks
depends on the size and density of the network. Similarly, it is reasonable to
hypothesize that there might be differences depending on the structure of the
network (e.g., clustered networks, small-world networks). Thus exploring the
effectiveness of NL and AM visualizations on different types of graphs, and using
a broader spectrum of tasks, seems worthwhile.
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Fig. 1. Evaluated visualizations: node-link diagram and adjacency matrix.

Our study uses one real-world, scale-free dataset of 258 nodes and 1090 edges.
This makes our dataset different in structure and larger than previously eval-
uated networks. For example, Ghoniem et al. evaluated random networks that
were about 2.5 times smaller, albeit somewhat denser. We argue (in section
3) that our chosen dataset is worth studying as it exemplifies a large class of
networks that occur in real applications.

More recently, networks are used to solve increasingly complex problems
and as a result, there is an expanding range of tasks that are relevant in real
applications and which are of interest to the visualization community. Our study
evaluates many tasks (14), carefully chosen to span multiple task taxonomies [31,
4]. Many of these tasks were not previously investigated in the context of NL
and AM representations.

Given the caveat that these results apply to the specific underlying network
and the specific implementations of NL and AM visualizations, some of our
results confirm prior observations in similar settings, while others are new. NL
outperforms AM for questions about graph topology (e.g., “Select all neighbors
of node,” “Is a highlighted node connected to a named node?”). Of 10 such tasks,
participants who used the node-link diagram were more accurate in 5 and less
accurate in 2. NL and AM give similar results for 4 tasks which tested the ability
of the participants to identify and compare node groups or clusters, except one
instance in which AM outperforms NL. Finally, NL and AM provide similar
results on 2 memorability tasks. The full results are shown in Figure 4.

2 Related Work

Considerable effort has been expended on optimizing NL and AM visualizations
to remove clutter, increase the saliency of visual patterns, and support data
reading tasks [53]. NL, AM, and slight variations thereof have long been used
in practice to support analyses of data in a broad range of domains, including
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proteomic data [49, 28, 7, 27], brain connectivity data [3], social-networks [52],
and engineering [48].

Static visual encodings were augmented by interaction to support the explo-
ration and analysis of large and intricate datasets typical of real-life applications.
Interactive systems that visualize complex relational data use NL [5, 8, 49], and
AM [19, 9, 6, 11, 44, 10, 16, 50]. We reviewed such systems to determine common
interactions and included them in our evaluated visualizations.

While the two types of visualizations have been used broadly for a long time,
studying how people parse them visually and which visualization method better
supports specific tasks and datasets, is ongoing. For example, studies by Pur-
chase et al. [39, 54, 40] consider how node-link layouts impact data readability,
eye-tracking research by Huang et al. reveal visual patterns and measure the cog-
nitive load associated with network exploration [25, 26]. More recently Jianu et
al. and Saket et al. consider the performance of node-link diagrams with overlaid
group information [27, 47].

Our work is one in a series of studies that compare NL and AM representa-
tions. Ghoniem et al. [20] evaluated the two approaches on seven connectivity
and counting tasks, using interactive visualizations (e.g., node can be selected
and highlighted). Synthetic graphs of three sizes (20, 50, 100 nodes) and three
densities (0.2, 0.4, and 0.6) were used. The authors found that for small sparse
graphs, NL was better in connectivity tasks, but that for large and dense graphs,
AM outperformed NL for all tasks. Similarly, Keller et al. [29] evaluated six tasks
on three real-life networks of varying small sizes (8, 22, 50) and three densities
(unspecified, 0.2, 0.5). Using both static and interactive variants of NL and
AM, Abuthawabeh et al. found that the participants were equally able to de-
tect structure in graphs representing code dependencies [1]. Alper et al. found
that in tasks involving the comparison of weighted graphs, matrices outperform
node-link diagrams [3]. Finally, Christensen et al. [15] evaluated matrix quilts in
addition to NL and AM in a smaller scale study.

Our study adds to what is already known in several ways. First, we explore
a significantly broader range of tasks than earlier studies. These were carefully
selected to cover the graph task taxonomy of Lee et al. [31] and the general
taxonomy of visualization tasks by Amar et al. [4]. We also considered the task
taxonomies for simple graphs [31], clustered graphs [46], and more generally for
visualization tasks [4, 51], which have been found to be useful in guiding research
and informing user study task choices [27, 47]. Second, our study uses a large
real-world network, typical of many scale-free networks that arise in practical
applications. Finally, unlike previous studies, we leverage crowdsourcing, via
Amazon’s Mechanical Turk, to evaluate many tasks with many participants.

Note that Mechanical Turk provides access to a diverse participant popula-
tion [32, 30], and is considered a valid platform for evaluation in general [37, 30],
as well as specifically in the context of visualization studies [22]. Many recent
visualization studies are crowdsourced [14, 34, 27, 42, 13] and specific platforms
for online evaluations are developed, including GraphUnit designed for online
evaluation of network visualizations [36].
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3 Study Design

3.1 Stimuli: Data

We evaluated a single network with 258 nodes and 1090 edges, representing cook-
ing ingredients connected by edges when frequently used together in recipes. The
density of the network was 0.016 (computed as #edges/#nodes2). This network
had been explored previously by Ahn et al. [2]. In its original form, the network
is larger (381 nodes) but we reduced it slightly to ensure it could be visualized
smoothly in a browser. We did so by removing disconnected components and
low-weight edges. Evaluating a single dataset allowed us to cover a broad spec-
trum of tasks while keeping the size of the study manageable, but naturally, this
choice has several limitations, discussed in section 5.

Rationale: Our motivation for choosing the particular network was three-fold.
First, it is different than those already evaluated by previous studies. Our net-
work is 2.5 and 5 times larger than those evaluated by Ghoniem et al. and
Keller et al.. Second, our network was chosen as a representative of several
types of real-world networks. Specifically, we reviewed 17 relational datasets (e.g.,
trade exchanges between countries, the Les Miserable dataset, TVCG paper co-
authorships, protein-interaction networks). We selected one from this set that
was representative in terms of structure and density, while at the same time
sufficiently small to be evaluated in a browser. Our network has about 4 times
more edges than nodes. This was close to the average edge/node ratio in the 17
networks we reviewed and representative of many networks commonly found in
practice [33]. Third, from a practical stand-point, we believe a dataset revolving
around cooking ingredients dataset would have a greater appeal to participants.

3.2 Stimuli: Visual Encoding

We evaluated two visual encodings: a node-link diagram (NL) drawn using the
neato algorithm from graphviz [17], and an adjacency matrix (AM), sorted to
reveal clusters using the barycenter algorithm available in the Reorder.js li-
brary [19]. We clustered the network using modularity clustering from GMap [24]
and encoded this information in the two visual representations using color, as
shown in Fig. 1. Both visualizations were developed using the D3 web-library.

Rationale: The neato algorithm is often used in NL evaluations [20, 27]. We
ordered our AM to reveal structure, as we considered this more representative
of how matrices are used in practice, unlike Ghoniem et al. [20], who used a
lexicographical order.

3.3 Stimuli: Interactions

Both visualizations support panning and zooming, using the mouse-wheel. Multi-
ple nodes can be selected by clicking on them, and deselected with an additional
click. Selecting a node in NL colors both the node and its outgoing edges in
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purple. Selections in AM operate on node labels but change the color of the cor-
responding node’s row or column. Similarly, node mouse-over in NL turns the
node and its edges green and shows the node label via tooltips. Node mouse-
over in AM colors the row or column. Note that for both node selection and
node mouse-over in AM, if a row (column) is colored the complementary column
(row) is not. We chose this approach since both Ghoniem at al. and Okoe et al.
mention that multiple markings for the same node can confuse users [20, 27].

To select a node as the answer to a task, the participants double-click it. This
marks the node with a thick black contour. In both NL and AM this marking
was restricted to nodes and labels, without extending to edges or rows/columns.
The participants could also deselect an answer by double-clicking it again.

Similar interactions apply to edge selection: An edge mouse-over in NL turns
the edge green, and if clicked it is selected and so turns purple. In AM, hovering
over an edge-cell highlights its corresponding row and column in green, and
clicking it selects the edge.

Rationale: We chose to evaluate interactive visualizations as interactivity is
typical in real-world applications. Previous studies, such as those of Ghoniem et
al. or Keller et al., also used basic interactions for the same reason. Interactivity
can significantly change the effectiveness of a visual encoding, however, and a
careful choice of interactive techniques is warranted.

Our goal was to use interactive techniques that are ecologically valid (i.e.,
representative of interactions typically associated with NL or AM visualizations)
and fair (i.e., providing similar functionality and power in both visualizations).
To this end, we reviewed 9 systems for network visualization (e.g., Gephi [8],
Cytoscape [49], Tulip [5]), 12 network evaluation papers (e.g., Ghoniem et al.[20],
Keller et al. [29], Okoe et al.[35]) and 6 systems and papers for adjacency matrices
(e.g., ZAME [18],TimeMatrix [55], work by Perin et al. [38], work by Henry et
al. [23]). We cataloged the interactive features described or available in these
systems, as well as their particular implementation, and then selected the set of
most common interactions.

This resulted in a set of interactions that generally overlapped but also dif-
fered slightly from those implemented in previous studies. Most importantly, our
visualizations implemented zooming and panning, which was required to solve
some of the tasks. We believe the addition of zooming and panning is valuable
since such basic navigation is an integral part of real-life systems. Our node link
diagrams also allowed users to move nodes, an interaction that can be used to
disambiguate cases in which nodes or edges overlap, and is ubiquitous in NL
systems. This interaction does not have an equivalent in AM but is also not
necessary as rows and columns are evenly spaced.

3.4 Tasks

We evaluated the 14 tasks described in Table 1. Participants solved multiple
repeats (generally 5 or 10) of each task. Task repeats were selected manually
on the network so as to cover multiple levels of complexity. For example, our
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Fig. 2. Participants mouse-over nodes to highlight them (green) and click on nodes to
select them (purple). Designating a node as the answer for a task answer is accomplished
via a double-click, which draws a black contour around the node.

repeats included nodes with both low and large degrees (e.g., T1, T2), short and
long paths (e.g., T10, T13), or nodes with few and many neighbors (e.g., T4).

Three of our tasks (T5, T11, T14) warrant a more detailed discussion. We
included two memorability tasks, (T11, T14). The former tested the ability of
participants to recall information they had looked for or accessed at an earlier
time, and is similar to memorability tasks evaluated by Saket et al. [45]. The
latter tested the ability of participants to recognize visual configurations they
had viewed previously and is more similar to tasks used by Jianu et al. and
Borkin et al. [27, 13]. Both memorability tasks were based on questions that the
participants had to answer early in their session (i.e., T9 in group 4, and T12
in group 5) to prime the participants with a particular piece of information or
visual configuration. A few minutes later, after performing a set of other tasks
(i.e, T10 in group 4, T13 in group 5), the participants were asked about the
information from the earlier task.

We also use a path-estimation task (T5), which requires the participants to
quickly estimate how far two nodes are, in terms of the shortest path between
them. Due to timing constraints, the participants are not able to “compute” the
correct answers to this task, but rather have to use perceptual mechanisms to
give a best-guess response.

Rationale: Our overarching goal in selecting our tasks was to cover a wide
spectrum of different and realistic network tasks. We selected tasks to cover the
graph objects they provide answers about (i.e., nodes, edges, paths), as well as
cover Lee et al.’s categories of graph-reading tasks, and Amar et al.’s general
types of visualization tasks. Several of our tasks have been used before but un-
der slightly different conditions. Additionally, we included tasks that go beyond
the previous studies comparing NL and AM, such as tasks involving topologi-
cal clusters. We also included memorability tasks as the memorability of visual
encodings is a topic of growing interest in the visualization community [13, 45].
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Task Target Task tax. [31] Task tax. [4] Group #Repeats Time
1. Given two highlighted nodes, select the

one with the larger degree. node

Topology

(adjacency)

Retrieve value,

Sort 1 10 15

2. Given a highlighted node, select all its

neighbors edge

Topology

(adjacency,

accessability)

Retrieve value,

Filter 1 10 25
3. Given two clusters of highlighted nodes,

which one is more interconnected?

clusters,

cliques

Overview

(connectivity)

Filter, Sort,

Cluster 1 10 10

4. Given two highlighted nodes, select all

of the common neighbors. edge

Topology

(shared

neighbor)

Retrieve value,

Filter 2 10 30
5. Given two pairs of highlighted nodes

(red and blue) and limited time, estimate

which pair is closer in terms of graph

topology?

path,

edge

Overview

(connectivity)

Derive value,

Sort 2 10 10
6. How many clusters are there in the

visualization? clusters

Overview

(connectivity)

Derive

value 3 1 10
7. Given two groups of highlighted nodes

(e.g., red and blue) and limited time,

estimate which group is larger. clusters

Attribute

based

Filter, Sort,

Derive value,

Correlate 3 10 10
8. Given two highlighted nodes decide

whether they belong to the same group.

clusters,

nodes

Attribute

based

Cluster,

Filter 3 10 10
9. Given one highlighted node and one

named node, are they connected? edge

Topology

(adjacency) Retrieve value 4 5 20

10. Given two highlighted nodes, how long

is the shortest path between them?

path,

edge

Topology

(connectivity)

Retrieve value,

Derived value,

filter 4 5 60
11. Memorability: After spending several

minutes on task 10, can participants

remember the answers they gave to

task 9, without access to the visualization? See section 3.4 See section 3.4 4 5 unlim
12. Given two highlighted nodes and three

named ones, which of the named nodes

is connected to both highlighted nodes?

(exemplified in Figure 3) edge

Topology

(shared neighbor)

Retrieve value,

Filter 5 5 60

13. Given a selected node, how many nodes

are within two edges’ reach? edge

Topology

(accessibility)

Retrieve value,

Derive value,

Filter 5 5 60
14. Memorability: After spending several

minutes on tasks 13, can participants remember

(i.e., select) which nodes were highlighted as

part of task 12, if showed the visualization

with the answers they gave to task 13

highlighted?

**See paper

body

**See paper

body 5 5 unlim

Table 1. Tasks: the columns describe (i) the task, (ii) targeted network element, (iii-iv)
task categories in Lee et al.’s and Amar et al.’s taxonomies, (v) group number the task
was evaluated in, (vi) number of instances of this task type, (vii) task time limit (sec).

We also hypothesized there would be differences between the two visualizations
in this respect. We included a path-estimation task [27], as it is a good repre-
sentative of the “Overview” category of graph tasks, and underlies perceptual
queries that users make on relational data.

3.5 Hypotheses

Based on previous results by Ghoniem et al. [20], Keller et al. [29], Okoe et
al. [36], Jianu et al. [27], and Saket et al. [47] we expected that:

H1: Performance in NL and AM would be comparable in both time and accuracy
for tasks involving the retrieval of information about nodes and involving direct
connectivity (T1, T2, T4, T9, T12).

H2: NL would enable more accurate and faster answers in connectivity and
accessibility tasks involving paths of length greater than two (T5, T10, T13).
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H3: Performance on group tasks (T3, T6, T7, T8) would be comparable both in
time and and accuracy in the two visualizations, except for estimating group
interconnectivity (T6). We expected the latter to be easier in matrices as esti-
mating the number of non-overlapping dots in a square should be easier than
estimating overlapping edges in an irregular 2D area.

H4: We expected that memorability would be higher in node-link diagrams due
to its more distinguishable features.

3.6 Design

We used a between-subjects experiment with two conditions. We divided our 14
task types into 5 experimental groups, as shown in Table 1, and we evaluated
each group separately. Each participant was allowed to participate in a single
group and used just one of the two visualizations. We assigned participants to
groups and conditions in a round-robin fashion. We aimed to collect data from
around 50 participants per condition. As some participants did not complete
the study, the total number of participants for whom we collected data varies
slightly between conditions. All tasks were timed as shown in Table 1, with time
limits determined experimentally through a pilot-study and chosen to allow most
participants to complete the tasks, while moving the study along.

Rationale: Between-subject experiments are frequently used in the visualization
community [27, 47, 56, 12, 41, 30, 34]. One advantage of this design is the absence
of learning effects between evaluated conditions. A disadvantage is the need
for large numbers of participants, which is easily mitigated in a crowdsourced
setting. Moreover, between-subjects designs are quicker (since only one condition
is evaluated at a time) and online participants prefer shorter studies.

We divided the tasks into groups for the same reason. Having each participant
evaluate all tasks would have resulted in excessively long sessions that partici-
pants would have found tiring. Having participants solve only subsets of tasks
allowed us to reduce their time commitment. We used estimated task completion
times to group tasks, aiming for an expected duration of about 15 minutes.

We aimed for 50 participants per condition, matching the numbers used in
earlier crowdsourced studies [14, 27]. We decided to enforce short time-limits in
order to limit and make uniform the total session duration across participants.

3.7 Procedure

We used Amazon’s Mechanical Turk (MTurk) to crowdsource our study to a
broad population. To account for variations in participant demographics based
on time of day, we published small study batches throughout the day. We ran
conditions in parallel and directed incoming participants to them using a round-
robin assignment, to ensure that the two conditions sampled participants from
the same populations. The demographics of MTurk users are reported by Ross
et al. [43].
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Each incoming participant was first presented with an introduction of the
study’s purpose, a description of the dataset, a visualization they would see
and use, and the tasks they would perform. Each task was exemplified in the
introduction, as shown in Figure 2. Since our interactions relied on color, par-
ticipants were administered a color-blindness test. Next came a training session
which involved solving two instances of each type of task in their assigned group.
During the training session the participants could check the correctness of their
answers and were required to provide correct answers before advancing to the
main section of the study.

Finally, the participants were lead to the main part of the study. In the main
part of the study, task instances of each type in an assigned group were shown to
the participants. For example, since group 1 involved three distinct task types,
participants assigned to it solved three consecutive sections of ten task-instances
each. At the end, we asked the participants for comments.

We used GraphUnit [36] to create and deploy the study (i.e., study presenta-
tion, data collection). The evaluated visualizations were shown on the left, while
tasks, instructions, and answer widgets were shown on the right. Depending on
each specific task, users provided answers by either selecting nodes, or by using
interactive widgets such as text-boxes for numeric options, and check-boxes for
alternative choices. Time limits were enforced by showing a count-down timer
and hiding the visualization once the counter expired.

To increase the chances of collecting clean data, a bonus was awarded to the
best result in each group and condition. The participants were told that two of
the task-instances were control tasks and were designed to be easy enough for
anyone to solve.

4 Results

Fig. 3. Number of participants that took
part in each task group per condition and
the number of valid submissions used after
data cleaning.

Our results are summarized in Fig. 4.
By and large, they show that node-
link diagrams were better for most
types of connectivity tasks (T1, T2,
T4, T5, T9, T10, T13) thereby inval-
idating H1 but not H2. Performance
on group tasks was generally compa-
rable with the two visualizations, as
hypothesized (H3), though we found
that the AM was better for estimat-
ing the number of clusters rather than
their interconnectivity.

Data processing: We collected re-
sponses from a total of 557 individual
participants distributed across task
groups and conditions as shown in Fig. 3. We removed a total of 28 responses
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Fig. 4. Results: accuracy (top) and time (bottom). Error bars show one standard error.
A * indicates statistically significant results. Tasks 14 and 11 had no time limits.

which were much lower in both accuracy and time than the average in their
evaluated groups and conditions (treating them as random responses).

To compute accuracy for tasks involving node selections (T1, T2, T4), we
used the formula Acc = (‖RA∩TA‖)/‖TA‖}, where RA is the selection reported
by the participants and TA is the true answer. To compute answers for tasks
involving numeric answers (T6, T10, T13) we used the formula Acc = max(0, 1−
‖RA−TA|/|TA|), where RA is the answer reported by the participants and TA
is the true answer. For all other tasks we assigned a 1 to correct answers, and
a 0 to incorrect answers. Since each task type was represented in the study by
several repeats, we averaged the accuracies of a task’s individual repeats into an
accuracy for the task as a whole.

Statistical analysis: If the data is normally distributed (determined via a
Shapiro-Wilk test) we use a t-test analysis between conditions to determine if
the observed differences are significant. Otherwise we use a Wilcoxon-Rank-Sum
test. We indicate statistically significant differences with * in Fig. 4.



Revisited Network Representations 11

5 Discussion

Based on the quantitative results and our own interactions with the visualiza-
tions, we believe the results can be explained by several factors.

First, NL can be more compact than AM since their layout fully leverages the
2D area, while matrices are constrained to two 1D linear node orders. Matrices
favor dense networks (as number of edges increases, matrix size remains constant)
but not sparse ones (an empty matrix is as large as a dense one). Instead,
sparse node-link diagrams can often be packed tightly. At the extreme, an empty
network can be shown without loss in readability using NL in a

√
N ×

√
(N)

square. The same empty network would require a N×N square in an AM. Thus,
as networks grow larger but not necessarily denser, AM may incur an increasing
navigation cost. Concretely, in our experiment the NL diagrams required less
zooming for nodes to become legible and selected accurately. This could explain
the large differences in T1.

Second, node-link diagrams draw a node’s glyph, label, and connections in the
same place. This means that once an interesting label is spotted, the associated
node glyph is co-located, and from it, any of its outgoing edges can be traced
to another node glyph, and implicitly to its label. Moreover, the visual tracing
is aided by the presence of the edge. Instead, matrices dissociate the spaces in
which they show node information and edge information. Determining what the
endpoints of an edge are involves two potentially long visual-traces along the
horizontal and vertical axes. Similarly, finding an edge of an identified node of
interest involves a horizontal or vertical search. This could be one of the reasons
for the large effect in T9. Note, however, that the described visual search patterns
is only hypothesized and not yet demonstrated.

Third, Ghoniem et al. already found that AM performs poorly on tasks in-
volving paths longer than one [20], and our results on T10 and T13 confirm
this result. Interestingly, the average time of participants performing path tasks
(T10) in AM is significantly shorter than that for NL. However, a closer look
at the data reveals that this is due to many AM users giving up on solving the
task altogether after the first or second instance. Moreover, while the quality of
network layouts are heavily dependent on each network’s topology and drawing
algorithm, NL layouts (such as neato) aim to place nodes so that their net-
work distance matches their embedded distance. While matrices can also order
rows and columns, they are constrained by the use of a single dimension. This
could explain the results of T5: when one pair of nodes were in the same cluster
and the other not, comparing their topological proximity was possible in both
visualizations, but in all other cases NL outperforms AM.

Matrices eliminate occlusion and ambiguity problems. For example, while in
NL diagrams it is sometimes difficult to tell if an edge connects to a node or
passes through it, this is not the case with AMs. Moreover, many tasks that
involve visual searches or estimations in unconstrained 2D space with NL, are
easier with AM. For example, finding a particular node in an AM involves a linear
scan in a list of labels. Counting the number of nodes with certain properties can
also be done sequentially by moving through the matrix’s headers. Conversely,
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such tasks are difficult in NL diagrams as users have to search a 2D space and
mentally mark the position or labels of already visited nodes. This may account
for T4, where AM outperforms NL: participants could systematically scan two
selected AM node-rows and identify the columns where both rows had an edge.

Limitations: Several earlier studies comparing NL and AM considered the
effects of network size and density [21, 29]. While we recognize the value of this
approach, this was beyond the scope of our current study. Instead, we aimed to
understand how the two visualizations support a more complete range of tasks
(14 versus previously 7 and 6) in a network that is representative of real-world
networks in size and structure. It is unclear whether our results would generalize
to real-world networks that are significantly larger or denser but our work does
provide additional experimental data for a network unlike those evaluated earlier.

We use one type of network and a single instance thereof. This is a method-
ological drawback which we accepted, due to the overhead associated with prepar-
ing multiple appropriate real-world networks for evaluation and phrasing partici-
pant instructions using the semantics of different networks. While the limitations
of this approach are non-trivial, we attempted to balance them by using multiple
task-repeats of the same type and focusing on different parts of the network.

The density of our network was significantly lower than [20, 29]. However,
Melancon points out that large real-world networks with high densities are
rare [33]. He argues that the edge-to-node ratio is a better indicator for den-
sity in real-world networks as it is less sensitive to the number of nodes. Indeed,
only 1 of the 17 networks we considered, and 3 of the 19 networks Melancon con-
sidered had densities higher than 0.2. In 3 of these 4 cases, these dense networks
were also the smallest in terms of number of nodes.

As in recent studies of this type, we evaluate interactive rather than static
visualizations. Given the different types of visual encoding in NL and AM it is
difficult ensure that all interactions are fair to both visualizations. To alleviate
this concern we relied on a detailed review of the NL and AM literature, and
the selection of the most common interactions and their implementations (as
detailed in Section 3.3). This ensured, at least to some degree, that we evaluated
the interactive visualizations as they appear in practice.

Crowdsourced studies have known inherent limitations (e.g., difficulty con-
trolling the experimental setup and verifying what participants do). By and
large, however, crowdsourcing studies replicate prior controlled lab studies [22].

6 Conclusions
We presented the results of a crowdsourced evaluation of the NL and AM network
visualization techniques. Our study involved 557 online participants who used
interactive versions of the two encodings, to answer 14 questions about a large
network of 256 nodes and 1090 edges. The experiment included a wide range of
network tasks. We found that NL is better than AM for questions about network
topology and connectivity, and comparable for group and memorability tasks,
and therefor a better overall choice for visualizing datasets similar in size and
structure to the one we evaluated, provided a similar interaction set.
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