
VisUnit: Evaluating Interactive Graph Visualizations Using

 Crowdsourcing

Mershack Okoe* Radu Jianu

Florida International University

ABSTRACT

The process of evaluating visualizations can be time-consuming.
Here, we present a design aimed at automating the process of
performing quantitative and qualitative evaluations of graph
visualizations by leveraging crowdsourcing, and a set of
predefined evaluation modules based on a graph task taxonomy.
Specifically, we allow designers to quickly set up a user study
with representative graph tasks, measurable metrics, and
evaluation methods. Our system then uses a thin-client
architecture to automatically generate a web accessible user study
from our desktop visualization, places the study on Mechanical
Turk, and uses a statistical package to automatically process
incoming results. To evaluate our system, we performed three
concrete evaluation studies, all of which were configured and
deployed in less than an hour. We discuss how our system can be
used for automatic evaluations of interactive graph visualizations,
how it can facilitate evaluation of alternative designs during
iterative design processes, and how it could be used to find good
default configurations for graph visualizations.

Keywords: Graph evaluation, crowdsourcing graph evaluations.

1 INTRODUCTION

We explored a design aimed at automating controlled evaluation
studies of interactive graph visualizations by leveraging the
Mechanical Turk crowdsourcing platform. We evaluate it, and
show its potential for getting quick feedback on graph designs.
Performing evaluation studies for visualizations can be a tedious
and time-consuming task. Crowdsourcing has been shown to be a
valid platform for performing visualization experiments [2, 3].
Compared to lab-based studies, crowdsourced studies provide
easy access to a more diverse population and high number of
participants [3]. In this work, we show that crowdsourcing can be
leveraged to automate the evaluation of interactive graph
visualizations. This way, evaluation studies could be performed
more frequently to guide the design of graph visualizations, for
instance between stages of iterative development.

Specifically, we allow a graph visualization developer to
quickly set up a user study with representative graph tasks
selected from the graph task taxonomy of Lee et al. [4]. We
automatically generate a web-accessible user study of the graph
visualization, place the study on Mechanical Turk, and evaluate
the results for the developer automatically using statistical
measures that are aligned with the user study design. We used a
thin-client architecture to create web-accessible content from our
desktop based system.

Our contribution lies in introducing a design that leverages

crowdsourcing to simplify the evaluation of interactive graph

visualizations. To demonstrate the potential of the approach, we

performed three concrete evaluations all of which were configured

and deployed in less than an hour. Results from one of the studies

showed that users had better accuracy with interactive graphs

compared to static graphs.

2 RELATED WORK

In visualization, crowdsourcing has been shown to be a good
platform for performing evaluation studies. Notable evaluation
studies include works of Heer et al. [2], and Kosara et al. [3].
These studies were specific and manually set up.

Our design is aimed at automating controlled evaluation studies

of static and interactive graph visualizations by leveraging

crowdsourcing. Our implementation leverages a desktop

visualization and thus uses a thin-client architecture to deploy the

visualization to the web, but the principles of our design could

easily be extended to web visualizations.

Our work is most similar to efforts on simplifying the design of

controlled experiments. TouchStone [6] is a platform for

designing lab-based controlled HCI experiments, and

EvalBench[1] is a software library that supports lab-based

evaluation studies in visualization. Our work was also inspired by

TurkIt[5], a toolkit that leverages crowdsourcing for iterative text

editing tasks, but their approach is more automatic than ours.

Figure 1: An example of a task involving three nodes.

3 METHODS

First, to simplify graph visualization studies, we provide an
interface where designers can configure the settings for the
evaluation designs. Such settings include: the graph
visualizations for the control and test conditions, whether the
evaluation design is within or between users, and the quantitative
and qualitative questions to be included in the study. We provided
representative tasks from the task taxonomy of Lee et al. [4]. The
tasks include topology tasks (e.g. Are two highlighted nodes
connected? Is there a path between two or three highlighted
nodes?), attribute tasks (e.g. Is there an adjacent node starting
with a letter?), and browsing tasks (e.g. Find the number of nodes
on a given path that starts with a letter). The designer can also
select qualitative questions (e.g. rate the difficulty of the
visualization) or define qualitative questions of their own.
Additional configurations for the evaluation include specifying
the number of assignments to generate on Mechanical Turk, the
designer’s Mechanical Turk access information, and the reward to

* email:{mokoe001@cis.fiu.edu, rdjianu@cis.fiu.edu}

be given to users. On a click of a button, the HIT is created on
Mechanical Turk, and workers accepting the HIT can perform the
tasks on the webserver where the visualization is hosted.

Second, because our framework leverages a desktop

visualization development framework, we ensured that graph

visualizations developed on the framework can be made web

accessible through a thin-client architecture. Thus, when the

visualization is accessed on the web, all rendering of the

visualization occurs on our servers and images are sent to the

client. Our thin-client achieves up to 10fps making it easy for

users to interact with the visualization without lag. However, we

note that our design principles would work just as well with web

visualizations created in D3, provided an interface mechanism

was developed.

Third, we used methods of designing evaluation studies from

experimental research. As a default dataset we used a book

recommendation network (900 nodes, 2500 edges). We created

sets of target nodes for each task type (e.g., pairs of nodes for

connection or path tasks). Depending on the number of questions

requested by the developer, target nodes are selected from these

predefined groups and highlighted in the visualization when the

tasks are presented to the worker. Also, when nodes are

highlighted in the visualization as part of a task, the visualization

is automatically centered so that those nodes are in view. When

the evaluation is started, the user is given an instruction about the

types of tasks involved in the study. The user is also guided

through a training session involving 2 questions for each type of

task involved in the study. During the training session users are

told whether their answers are correct or not.

In between-user studies, half of the subjects solve the tasks in

the control condition and half in test condition. In a within-user

study all subjects solve the tasks twice, once in the control

condition and once in the test condition. Our design automatically

accounts for learning effects by starting half of the users in the

control condition and the other half in the test condition.

For each user and each task our implementation records time

and accuracy. Results are saved on the server and upon request

they are automatically downloaded and analyzed using the R

statistical package. So far, we generate boxplots that compare the

average time and accuracy on tasks for the control and test

conditions and we generate text files containing the results of

statistical analyses. These analyses are correlated with the selected

user study design: for within user designs a Shapiro-Wilk analysis

tests for normality and is followed by a paired t-test, while for

between user designs a Kruskal-Wallis analysis is performed.

4 EVALUATION

To evaluate our system, we performed three evaluation studies.
The first evaluation was a between user study involving 40 MTurk
workers. Half of the workers performed the tasks with
interactivity disabled (control condition), and the other half
performed the tasks with interactivity enabled (test-condition). We
used two main tasks: determine whether two highlighted nodes
are directly connected? (12 questions), and determine whether
there is a direct path between 3 highlighted nodes (8 questions).
The graph visualization used was drawn with the neato algorithm,
and we use a book recommendation dataset (900 nodes, 2500
edges). We measured time and accuracy. Results from this study
showed that users had better accuracy with interactivity enabled
than with interactivity disabled as shown in Fig 1(a). The other
two evaluations we performed were within user studies involving
30 participants each, and were used to test how changes in two
graph readability metrics (i.e. node-color, and edge-size) affect
task accuracy. The second study evaluated node-color (green vs.

yellow), and the third study evaluated edge stroke size (2 vs. 6).
For the second and third studies, the questions were similar to the
first study, and users performed the tasks with interactivity
enabled. These three studies were set up in less than an hour and
analysed with a click of a button when tasks were completed by
MTurk workers. The results from the second and third studies did
not show any significant difference in user performance.

Figure 2: Boxplots results for the interactive vs. non-interactive

visualization evaluation (where “.Con” and “.Test” refers to the

control and test conditions respectively.

5 CONCLUSION

We explored a design aimed at automating controlled evaluation

studies of interactive graph visualizations by leveraging the

Mechanical Turk crowdsourcing platform. We provide an

interface where a designer can quickly set up a user study with

representative graph tasks, automatically place the study on

Mechanical Turk, and evaluate the study results using the R-

statistical package. Results from our user studies shows that such

a system can help designers gain quick feedback on their graph

designs. Our current work presents a design and evaluation.

Additional work is needed to transform this design into a useable

testing platform. Future work will include: multiple datasets

representative of diverse graph topologies and sizes; more

comprehensive data reporting (e.g. bar charts, and other statistical

analysis methods such as Mann-Whitney and ANOVA); and a

way of connecting the evaluation engine to third party web-

visualizations. However, our design represents a first step in

automating the process of evaluating visualizations.

REFERENCES

[1] Wolfgang Aigner, Stephan Hoffmann, and Alexander Rind.
Evalbench: a software library for visualization evaluation. In

Computer Graphics Forum, volume 32, pages 41–50. Wiley Online

Library, 2013.
[2] Jeffrey Heer and Michael Bostock. Crowdsourcing graphical

perception: using mechanical turk to assess visualization design. In

Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, pages 203–212. ACM, 2010.

[3] Robert Kosara and Caroline Ziemkiewicz. Do mechanical turks dream

of square pie charts? In Proceedings of the 3rd BELIV’10 Workshop:
BEyond time and errors: novel evaLuation methods for Information

Visualization, pages 63–70. ACM, 2010.

[4] Bongshin Lee, Catherine Plaisant, Cynthia Sims Parr, Jean-Daniel
Fekete, and Nathalie Henry. Task taxonomy for graph visualization.

In Proceedings of the 2006 AVI workshop on BEyond time and

errors: novel evaluation methods for information visualization,
pages 1–5. ACM, 2006.

[5] Greg Little, Lydia B Chilton, Max Goldman, and Robert C Miller.

Turkit: human computation algorithms on mechanical turk. In
Proceedings of the 23nd annual ACM symposium on User interface

software and technology, pages 57–66. ACM, 2010.

[6] Wendy E Mackay, Caroline Appert, Michel Beaudouin-Lafon, Olivier
Chapuis, Yangzhou Du, Jean-Daniel Fekete, and Yves Guiard.

Touchstone: exploratory design of experiments. In Proceedings of

the SIGCHI conference on Human factors in computing systems,
pages 1425–1434. ACM, 2007.

