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ABSTRACT 

The process of evaluating visualizations can be time-consuming. 
Here, we present a design aimed at automating the process of 
performing quantitative and qualitative evaluations of graph 
visualizations by leveraging crowdsourcing, and a set of 
predefined evaluation modules based on a graph task taxonomy. 
Specifically, we allow designers to quickly set up a user study 
with representative graph tasks, measurable metrics, and 
evaluation methods. Our system then uses a thin-client 
architecture to automatically generate a web accessible user study 
from our desktop visualization, places the study on Mechanical 
Turk, and uses a statistical package to automatically process 
incoming results. To evaluate our system, we performed three 
concrete evaluation studies, all of which were configured and 
deployed in less than an hour. We discuss how our system can be 
used for automatic evaluations of interactive graph visualizations, 
how it can facilitate evaluation of alternative designs during 
iterative design processes, and how it could be used to find good 
default configurations for graph visualizations. 
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1 INTRODUCTION 

We explored a design aimed at automating controlled evaluation 
studies of interactive graph visualizations by leveraging the 
Mechanical Turk crowdsourcing platform. We evaluate it, and 
show its potential for getting quick feedback on graph designs. 
Performing evaluation studies for visualizations can be a tedious 
and time-consuming task. Crowdsourcing has been shown to be a 
valid platform for performing visualization experiments [2, 3]. 
Compared to lab-based studies, crowdsourced studies provide 
easy access to a more diverse population and high number of 
participants [3].  In this work, we show that crowdsourcing can be 
leveraged to automate the evaluation of interactive graph 
visualizations. This way, evaluation studies could be performed 
more frequently to guide the design of graph visualizations, for 
instance between stages of iterative development. 

Specifically, we allow a graph visualization developer to 
quickly set up a user study with representative graph tasks 
selected from the graph task taxonomy of Lee et al. [4]. We 
automatically generate a web-accessible user study of the graph 
visualization, place the study on Mechanical Turk, and evaluate 
the results for the developer automatically using statistical 
measures that are aligned with the user study design. We used a 
thin-client architecture to create web-accessible content from our 
desktop based system.   

Our contribution lies in introducing a design that leverages 

crowdsourcing to simplify the evaluation of interactive graph 

visualizations. To demonstrate the potential of the approach, we 

performed three concrete evaluations all of which were configured 

and deployed in less than an hour. Results from one of the studies 

showed that users had better accuracy with interactive graphs 

compared to static graphs. 

2 RELATED WORK 

In visualization, crowdsourcing has been shown to be a good 
platform for performing evaluation studies. Notable evaluation 
studies include works of Heer et al. [2], and Kosara et al. [3]. 
These studies were specific and manually set up.  

Our design is aimed at automating controlled evaluation studies 

of static and interactive graph visualizations by leveraging 

crowdsourcing. Our implementation leverages a desktop 

visualization and thus uses a thin-client architecture to deploy the 

visualization to the web, but the principles of our design could 

easily be extended to web visualizations.  

Our work is most similar to efforts on simplifying the design of 

controlled experiments. TouchStone [6] is a platform for 

designing lab-based controlled HCI experiments, and 

EvalBench[1] is a software library that supports lab-based 

evaluation studies in visualization. Our work was also inspired by 

TurkIt[5], a toolkit that leverages crowdsourcing for iterative text 

editing tasks, but their approach is more automatic than ours. 
 

 

Figure 1: An example of a task involving three nodes. 

3 METHODS 

First, to simplify graph visualization studies, we provide an 
interface where designers can configure the settings for the 
evaluation designs.  Such settings include: the graph 
visualizations for the control and test conditions, whether the 
evaluation design is within or between users, and the quantitative 
and qualitative questions to be included in the study. We provided 
representative tasks from the task taxonomy of Lee et al. [4].  The 
tasks include topology tasks (e.g.  Are two highlighted nodes 
connected? Is there a path between two or three highlighted 
nodes?), attribute tasks (e.g. Is there an adjacent node starting 
with a letter?), and browsing tasks (e.g. Find the number of nodes 
on a given path that starts with a letter). The designer can also 
select qualitative questions (e.g. rate the difficulty of the 
visualization) or define qualitative questions of their own.  
Additional configurations for the evaluation include specifying 
the number of assignments to generate on Mechanical Turk, the 
designer’s Mechanical Turk access information, and the reward to 
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be given to users. On a click of a button, the HIT is created on 
Mechanical Turk, and workers accepting the HIT can perform the 
tasks on the webserver where the visualization is hosted. 

Second, because our framework leverages a desktop 

visualization development framework, we ensured that graph 

visualizations developed on the framework can be made web 

accessible through a thin-client architecture. Thus, when the 

visualization is accessed on the web, all rendering of the 

visualization occurs on our servers and images are sent to the 

client. Our thin-client achieves up to 10fps making it easy for 

users to interact with the visualization without lag. However, we 

note that our design principles would work just as well with web 

visualizations created in D3, provided an interface mechanism 

was developed.  

Third, we used methods of designing evaluation studies from 

experimental research. As a default dataset we used a book 

recommendation network (900 nodes, 2500 edges). We created 

sets of target nodes for each task type (e.g., pairs of nodes for 

connection or path tasks). Depending on the number of questions 

requested by the developer, target nodes are selected from these 

predefined groups and highlighted in the visualization when the 

tasks are presented to the worker. Also, when nodes are 

highlighted in the visualization as part of a task, the visualization 

is automatically centered so that those nodes are in view.  When 

the evaluation is started, the user is given an instruction about the 

types of tasks involved in the study. The user is also guided 

through a training session involving 2 questions for each type of 

task involved in the study. During the training session users are 

told whether their answers are correct or not.  

In between-user studies, half of the subjects solve the tasks in 

the control condition and half in test condition. In a within-user 

study all subjects solve the tasks twice, once in the control 

condition and once in the test condition. Our design automatically 

accounts for learning effects by starting half of the users in the 

control condition and the other half in the test condition.  

For each user and each task our implementation records time 

and accuracy.  Results are saved on the server and upon request 

they are automatically downloaded and analyzed using the R 

statistical package. So far, we generate boxplots that compare the 

average time and accuracy on tasks for the control and test 

conditions and we generate text files containing the results of 

statistical analyses. These analyses are correlated with the selected 

user study design: for within user designs a Shapiro-Wilk analysis 

tests for normality and is followed by a paired t-test, while for 

between user designs a Kruskal-Wallis analysis is performed.   

4 EVALUATION 

To evaluate our system, we performed three evaluation studies. 
The first evaluation was a between user study involving 40 MTurk 
workers. Half of the workers performed the tasks with 
interactivity disabled (control condition), and the other half 
performed the tasks with interactivity enabled (test-condition). We 
used two main tasks: determine whether two highlighted nodes 
are directly connected? (12 questions), and determine whether 
there is a direct path between 3 highlighted nodes (8 questions).  
The graph visualization used was drawn with the neato algorithm, 
and we use a book recommendation dataset (900 nodes, 2500 
edges). We measured time and accuracy. Results from this study 
showed that users had better accuracy with interactivity enabled 
than with interactivity disabled as shown in Fig 1(a).  The other 
two evaluations we performed were within user studies involving 
30 participants each, and were used to test how changes in two 
graph readability metrics (i.e. node-color, and edge-size) affect 
task accuracy. The second study evaluated node-color (green vs. 

yellow), and the third study evaluated edge stroke size (2 vs. 6). 
For the second and third studies, the questions were similar to the 
first study, and users performed the tasks with interactivity 
enabled. These three studies were set up in less than an hour and 
analysed with a click of a button when tasks were completed by 
MTurk workers. The results from the second and third studies did 
not show any significant difference in user performance.  

       

Figure 2: Boxplots results for the interactive vs. non-interactive 

visualization evaluation (where “.Con” and “.Test” refers to the 

control and test conditions respectively.    

5 CONCLUSION 

We explored a design aimed at automating controlled evaluation 

studies of interactive graph visualizations by leveraging the 

Mechanical Turk crowdsourcing platform. We provide an 

interface where a designer can quickly set up a user study with 

representative graph tasks, automatically place the study on 

Mechanical Turk, and evaluate the study results using the R-

statistical package.  Results from our user studies shows that such 

a system can help designers gain quick feedback on their graph 

designs. Our current work presents a design and evaluation. 

Additional work is needed to transform this design into a useable 

testing platform. Future work will include: multiple datasets 

representative of diverse graph topologies and sizes; more 

comprehensive data reporting (e.g. bar charts, and other statistical 

analysis methods such as Mann-Whitney and ANOVA); and a 

way of connecting the evaluation engine to third party web-

visualizations. However, our design represents a first step in 

automating the process of evaluating visualizations. 
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